Conformational selection or induced fit for Brinker and DNA recognition.

نویسندگان

  • Fang Qin
  • Yaobin Jiang
  • Yue Chen
  • Maoying Wu
  • Guanwen Yan
  • Wenjun Ye
  • Yixue Li
  • Jian Zhang
  • Hai-Feng Chen
چکیده

Brinker is the key target protein of the Drosophila Decapentaplegic morphogen signalling pathway. Brinker is widely expressed and can bind with DNA. NMR spectra suggest that apo-Brinker is intrinsically unstructured and undergoes a folding transition upon DNA-binding. However, the coupled mechanism of binding and folding is poorly understood. Here, we performed molecular dynamics (MD) simulations for both bound and apo-Brinker to study the mechanism. Room-temperature MD simulations suggest that Brinker becomes more rigid and stable upon DNA-binding. Kinetic analysis of high-temperature MD simulations shows that both bound and apo-Brinker unfold via a two-state process. The time scale of tertiary unfolding is significantly different between bound and apo-Brinker. The predicted Φ-values suggest that there are more residues with native-like transition state ensembles (TSEs) for bound Brinker than for apo-Brinker. The average RMSD differences between bound and apo-Brinker and Kolmogorov-Smirnov (KS) test analysis illustrate that Brinker folding upon DNA-binding might obey induced-fit mechanism based on MD simulations. These methods can be used for the research of other biomolecular folding upon ligand-binding.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The role of dynamic conformational ensembles in biomolecular recognition.

Molecular recognition is central to all biological processes. For the past 50 years, Koshland's 'induced fit' hypothesis has been the textbook explanation for molecular recognition events. However, recent experimental evidence supports an alternative mechanism. 'Conformational selection' postulates that all protein conformations pre-exist, and the ligand selects the most favored conformation. F...

متن کامل

Conformational selection or induced fit? A critical appraisal of the kinetic mechanism.

For almost five decades, two competing mechanisms of ligand recognition, conformational selection and induced fit, have dominated our interpretation of ligand binding in biological macromolecules. When binding-dissociation events are fast compared to conformational transitions, the rate of approach to equilibrium, k(obs), becomes diagnostic of conformational selection or induced fit based on wh...

متن کامل

Conformational selection is a dominant mechanism of ligand binding.

Molecular recognition in biological macromolecules is achieved by binding interactions coupled to conformational transitions that precede or follow the binding step, two limiting mechanisms known as conformational selection and induced fit, respectively. Sorting out the contribution of these mechanisms to any binding interaction remains a challenging task of general interest in biochemistry. He...

متن کامل

Global Conformational Selection and Local Induced Fit for the Recognition between Intrinsic Disordered p53 and CBP

The transactivation domain (TAD) of tumor suppressor p53 can bind with the nuclear coactivator binding domain (NCBD) of cyclic-AMP response element binding protein (CBP) and activate transcription. NMR experiments demonstrate that both apo-NCBD and TAD are intrinsic disordered and bound NCBD/TAD undergoes a transition to well folded. The recognition mechanism between intrinsic disordered protei...

متن کامل

Conformational selection or induced fit? New insights from old principles.

A long standing debate in biochemistry is to determine whether the conformational changes observed during biomolecular interactions proceed through conformational selection (of preexisting isoforms) or induced fit (ligand-induced 3D reshaping). The latter mechanism had been invoked in certain circumstances, for example to explain the non-Michaelian activity of monomeric enzymes like glucokinase...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 13 4  شماره 

صفحات  -

تاریخ انتشار 2011